38 research outputs found

    Structural Features of a Hyperthermostable Endo-β-1,3-glucanase in Solution and Adsorbed on “Invisible” Particles

    Get PDF
    AbstractConformational characteristics and the adsorption behavior of endo-β-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133°C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature

    Species and Strain Glycosylation Patterns of PrPSc

    Get PDF
    ). Both PrP isoforms bear two potential glycosylation sites and thus in a typical western blot with an anti-PrP antibody three distinct bands appear, corresponding to the di-, mono- or unglycosylated forms of the protein. The relative intensity and electrophoretic mobility of the three bands are characteristic of each TSE strain and have been used to discriminate between them. protein. and could play an accessory role in the appearance of some of the characteristic features of TSE strains. The differences in sugar composition could also be used as an additional tool for discrimination between the various TSEs

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Thermal Stabilization of an Endoglucanase by Cyclization

    Get PDF
    An intein-driven protein splicing approach allowed for the covalent linkage between the N- and C-termini of a polypeptide chain to create circular variants of the endo-β-1,3-1,4-glucanase, LicA, from Bacillus licheniformis. Two circular variants, LicA-C1 and LicA-C2, which have connecting loops of 20 and 14 amino acids, respectively, showed catalytic activities that are approximately two and three times higher, respectively, compared to that of the linear LicA (LicA-L1). The thermal stability of the circular variants was significantly increased compared to the linear form. Whereas the linear glucanase lost half of its activity after 3 min at 65 °C, the two circular variants have 6-fold (LicA-C1) and 16-fold (LicA-C2) increased half-life time of inactivation. In agreement with this, fluorescence spectroscopy and differential scanning calorimetry studies revealed that circular enzymes undergo structural changes at higher temperatures compared to that of the linear form. The effect of calcium on the conformational stability and function of the circular LicAs was also investigated, and we observed that the presence of calcium ions results in increased thermal stability. The impact of the length of the designed loops on thermal stability of the circular proteins is discussed, and it is suggested that cyclization may be an efficient strategy for the increased stability of proteins

    Covalent Attachment of Proteins to Solid Supports and Surfaces via Sortase-Mediated Ligation

    Get PDF
    BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays

    SOD1 and Amyotrophic Lateral Sclerosis: Mutations and Oligomerization

    Get PDF
    There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein

    Integrin-Blocking Antibodies Delay Keratinocyte Re-Epithelialization in a Human Three-Dimensional Wound Healing Model

    Get PDF
    The α6β4 integrin plays a significant role in tumor growth, angiogenesis and metastasis through modulation of growth factor signaling, and is a potentially important therapeutic target. However, α6β4-mediated cell-matrix adhesion is critical in normal keratinocyte attachment, signaling and anchorage to the basement membrane through its interaction with laminin-5, raising potential risks for targeted therapy. Bioengineered Human Skin Equivalent (HSE), which have been shown to mimic their normal and wounded counterparts, have been used here to investigate the consequences of targeting β4 to establish toxic effects on normal tissue homeostasis and epithelial wound repair. We tested two antibodies directed to different β4 epitopes, one adhesion-blocking (ASC-8) and one non-adhesion blocking (ASC-3), and determined that these antibodies were appropriately localized to the basal surface of keratinocytes at the basement membrane interface where β4 is expressed. While normal tissue architecture was not altered, ASC-8 induced a sub-basal split at the basement membrane in non-wounded tissue. In addition, wound closure was significantly inhibited by ASC-8, but not by ASC-3, as the epithelial tongue only covered 40 percent of the wound area at 120 hours post-wounding. These results demonstrate β4 adhesion-blocking antibodies may have adverse effects on normal tissue, whereas antibodies directed to other epitopes may provide safer alternatives for therapy. Taken together, we conclude that these three-dimensional tissue models provide a biologically relevant platform to identify toxic effects induced by candidate therapeutics, which will allow generation of findings that are more predictive of in vivo responses early in the drug development process

    Formation of Toxic Oligomeric α-Synuclein Species in Living Cells

    Get PDF
    Background: Misfolding, oligomerization, and fibrillization of α-synuclein are thought to be central events in the onset and progression of Parkinson's disease (PD) and related disorders. Although fibrillar α-synuclein is a major component of Lewy bodies (LBs), recent data implicate prefibrillar, oligomeric intermediates as the toxic species. However, to date, oligomeric species have not been identified in living cells. Methodology/Principal Findings: Here we used bimolecular fluorescence complementation (BiFC) to directly visualize α-synuclein oligomerization in living cells, allowing us to study the initial events leading to α-synuclein oligomerization, the precursor to aggregate formation. This novel assay provides us with a tool with which to investigate how manipulations affecting α-synuclein aggregation affect the process over time. Stabilization of α-synuclein oligomers via BiFC results in increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the formation of α-synuclein oligomers. Introduction of PD-associated mutations in α-synuclein did not affect oligomer formation but the biochemical properties of the mutant α-synuclein oligomers differ from those of wild type α-synuclein. Conclusions/Significance: This novel application of the BiFC assay to the study of the molecular basis of neurodegenerative disorders enabled the direct visualization of α-synuclein oligomeric species in living cells and its modulation by Hsp70, constituting a novel important tool in the search for therapeutics for synucleinopathies

    Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks

    Get PDF
    BACKGROUND: Osteoarthritis is a multifactorial disease characterized by destruction of the articular cartilage due to genetic, mechanical and environmental components affecting more than 100 million individuals all over the world. Despite the high prevalence of the disease, the absence of large-scale molecular studies limits our ability to understand the molecular pathobiology of osteoathritis and identify targets for drug development. METHODOLOGY/PRINCIPAL FINDINGS: In this study we integrated genetic, bioinformatic and proteomic approaches in order to identify new genes and their collaborative networks involved in osteoarthritis pathogenesis. MicroRNA profiling of patient-derived osteoarthritic cartilage in comparison to normal cartilage, revealed a 16 microRNA osteoarthritis gene signature. Using reverse-phase protein arrays in the same tissues we detected 76 differentially expressed proteins between osteoarthritic and normal chondrocytes. Proteins such as SOX11, FGF23, KLF6, WWOX and GDF15 not implicated previously in the genesis of osteoarthritis were identified. Integration of microRNA and proteomic data with microRNA gene-target prediction algorithms, generated a potential "interactome" network consisting of 11 microRNAs and 58 proteins linked by 414 potential functional associations. Comparison of the molecular and clinical data, revealed specific microRNAs (miR-22, miR-103) and proteins (PPARA, BMP7, IL1B) to be highly correlated with Body Mass Index (BMI). Experimental validation revealed that miR-22 regulated PPARA and BMP7 expression and its inhibition blocked inflammatory and catabolic changes in osteoarthritic chondrocytes. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that obesity and inflammation are related to osteoarthritis, a metabolic disease affected by microRNA deregulation. Gene network approaches provide new insights for elucidating the complexity of diseases such as osteoarthritis. The integration of microRNA, proteomic and clinical data provides a detailed picture of how a network state is correlated with disease and furthermore leads to the development of new treatments. This strategy will help to improve the understanding of the pathogenesis of multifactorial diseases such as osteoarthritis and provide possible novel therapeutic targets

    AA-Amyloidosis Can Be Transferred by Peripheral Blood Monocytes

    Get PDF
    Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein. Initial amyloid deposits appear in the perifollicular region of the spleen, followed by deposits in the liver. We used the established murine model and induced AA-amyloidosis in NMRI mice by intravenous injections of purified amyloid fibrils (‘amyloid enhancing factor’) combined with inflammatory challenge (silver nitrate subcutaneously). Blood plasma and peripheral blood monocytes were isolated, sonicated and re-injected into new recipients followed by an inflammatory challenge during a three week period. When the animals were sacrificed presence of amyloid was analyzed in spleen sections after Congo red staining. Our result shows that some of the peripheral blood monocytes, isolated from animals with detectable amyloid, contained amyloid-seed that primed for AA-amyloid. The seeding material seems to have been phagocytosed by the cells since the AA-precursor (SAA1) was found not be expressed by the monocytes. Plasma recovered from mice with AA amyloidosis lacked seeding capacity. Amyloid enhancing activity can reside in monocytes recovered from mice with AA-amyloidosis and in a prion-like way trigger amyloid formation in conjunction with an inflammatory disorder. Human AA-amyloidosis resembles the murine form and every individual is expected to be exposed to conditions that initiate production of the acute-phase reactant. The monocyte-transfer mechanism should be eligible for the human disease and we point out blood transfusion as a putative route for transfer of amyloidosis
    corecore